skip to main content


Search for: All records

Creators/Authors contains: "Kioupakis, Emmanouil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract EPW is an open-source software for ab initio calculations of electron–phonon interactions and related materials properties. The code combines density functional perturbation theory and maximally localized Wannier functions to efficiently compute electron–phonon coupling matrix elements, and to perform predictive calculations of temperature-dependent properties and phonon-assisted quantum processes in bulk solids and low-dimensional materials. Here, we report on significant developments in the code since 2016, namely: a transport module for the calculation of charge carrier mobility under electric and magnetic fields using the Boltzmann transport equation; a superconductivity module for calculations of phonon-mediated superconductors using the anisotropic multi-band Eliashberg theory; an optics module for calculations of phonon-assisted indirect transitions; a module for the calculation of small and large polarons without supercells; and a module for calculating band structure renormalization and temperature-dependent optical spectra using the special displacement method. For each capability, we outline the methodology and implementation and provide example calculations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Lead iodide (PbI2) has gained much interest due to its direct electronic gap in the visible range and layered crystal structure. It has thereby been considered as a promising material for applications in atomically thin optoelectronic devices. In this work, we present a detailed investigation of the effect of spin–orbit coupling (SOC) that arises from the presence of heavy atoms on the electronic and optical properties of PbI2 using first-principles calculations based on density-functional theory and many-body perturbation theory. We find that SOC not only alters the bandgap but also induces the mixing of orbital characters, resulting in a significant change in the overall band structure and charge carrier effective masses. Moreover, the band orbital mixing caused by SOC results in the dramatic change in optical transition matrix elements and, correspondingly, the absorption spectrum. Our experimentally measured absorption spectra validate the calculation results and demonstrate the importance of SOC in the optical processes of PbI2. Our findings provide insights that are important for the potential use of PbI2 as a material platform for visible optoelectronic devices.

     
    more » « less
    Free, publicly-accessible full text available May 22, 2024
  3. Two-dimensional (2D) hexagonal boron nitride (h-BN) is one of the few materials showing great promise for light emission in the far ultraviolet (UV)-C wavelength, which is more effective and safer in containing the transmission of microbial diseases than traditional UV light. In this report, we observed that h-BN, despite having an indirect energy bandgap, exhibits a remarkably high room-temperature quantum efficiency (∼60%), which is orders of magnitude higher than that of other indirect bandgap material, and is enabled by strong excitonic effects and efficient exciton-phonon interactions. This study offers a new approach for the design and development of far UV-C optoelectronic devices as well as quantum photonic devices employing 2D semiconductor active regions.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Both two-dimensional (2D) transitional metal dichalcogenides (TMDs) and III–V semiconductors have been considered as potential platforms for quantum technology. While 2D TMDs exhibit a large exciton binding energy, and their quantum properties can be tailored via heterostructure stacking, TMD technology is currently limited by the incompatibility with existing industrial processes. Conversely, III-nitrides have been widely used in light-emitting devices and power electronics but not leveraging excitonic quantum aspects. Recent demonstrations of 2D III-nitrides have introduced exciton binding energies rivaling TMDs, promising the possibility to achieve room-temperature quantum technologies also with III-nitrides. Here, we discuss recent advancements in the synthesis and characterizations of 2D III-nitrides with a focus on 2D free-standing structures and embedded ultrathin quantum wells. We overview the main obstacles in the material synthesis, vital solutions, and the exquisite optical properties of 2D III-nitrides that enable excitonic and quantum-light emitters.

     
    more » « less
  5. Abstract

    Entropic stabilization has evolved into a strategy to create new oxide materials and realize novel functional properties engineered through the alloy composition. Achieving an atomistic understanding of these properties to enable their design, however, has been challenging due to the local compositional and structural disorder that underlies their fundamental structure-property relationships. Here, we combine high-throughput atomistic calculations and linear regression algorithms to investigate the role of local configurational and structural disorder on the thermodynamics of vacancy formation in (MgCoNiCuZn)O-based entropy-stabilized oxides (ESOs) and their influence on the electrical properties. We find that the cation-vacancy formation energies decrease with increasing local tensile strain caused by the deviation of the bond lengths in ESOs from the equilibrium bond length in the binary oxides. The oxygen-vacancy formation strongly depends on structural distortions associated with the local configuration of chemical species. Vacancies in ESOs exhibit deep thermodynamic transition levels that inhibit electrical conduction. By applying the charge-neutrality condition, we determine that the equilibrium concentrations of both oxygen and cation vacancies increase with increasing Cu mole fraction. Our results demonstrate that tuning the local chemistry and associated structural distortions by varying alloy composition acts an engineering principle that enables controlled defect formation in multi-component alloys.

     
    more » « less
  6. Rutile compounds have exotic functional properties that can be applied for various electronic applications; however, the limited availability of epitaxial substrates has restricted the study of rutile thin films to a limited range of lattice parameters. Here, rutile GeO 2 is demonstrated as a new rutile substrate with lattice parameters of [Formula: see text] and [Formula: see text]. Rutile GeO 2 single crystals up to 4 mm in size are grown by the flux method. X-ray diffraction reveals high crystallinity with a rocking curve having a full width half-maximum of 0.0572°. After mechanical polishing, a surface roughness of less than 0.1 nm was obtained, and reflection high-energy electron diffraction shows a crystalline surface. Finally, epitaxial growth of (110)-oriented TiO 2 thin films on GeO 2 substrates was demonstrated using molecular beam epitaxy. Templated by rutile GeO 2 substrates, our findings open the possibility of stabilizing new rutile thin films and strain states for the tuning of physical properties. 
    more » « less
  7. Abstract

    BAs is a III–V semiconductor with ultra-high thermal conductivity, but many of its electronic properties are unknown. This work applies predictive atomistic calculations to investigate the properties of BAs heterostructures, such as strain effects on band alignments and carrier mobility, considering BAs as both a thin film and a substrate for lattice-matched materials. The results show that isotropic biaxial in-plane strain decreases the band gap independent of sign or direction. In addition, 1% biaxial tensile strain increases the in-plane electron and hole mobilities at 300 K by >60% compared to the unstrained values due to a reduction of the electron effective mass and of hole interband scattering. Moreover, BAs is shown to be nearly lattice-matched with InGaN and ZnSnN2, two important optoelectronic semiconductors with tunable band gaps by alloying and cation disorder, respectively. The results predict type-II band alignments and determine the absolute band offsets of these two materials with BAs. The combination of the ultra-high thermal conductivity and intrinsic p-type character of BAs, with its high electron and hole mobilities that can be further increased by tensile strain, as well as the lattice-match and the type-II band alignment with intrinsically n-type InGaN and ZnSnN2demonstrate the potential of BAs heterostructures for electronic and optoelectronic devices.

     
    more » « less